无安全问题 我爸爸的出生地 我妈妈的出生地 我的小学校名 我的中学校名 我最喜欢的运动 我最喜欢的歌曲 我最喜欢的电影 我最喜欢的颜色 自定义问题
水墨江南
kohaku
春意盎然
紫色梦幻
绿之印象
蓝色天空
黑色旋风
引用 最初由 无雨娃娃 发布看起来画出来的花边很PL函数?貌似使用起来非常麻烦The following illustrates the Julia set for functions of the form c sin(z)where z is a complex number x + iy.To do this we form the series zk+1 = c sin(zk)starting with some initial z0 The behavior of this series determines whether or not the initial z0 is part of the julia set or not. More precisely, if the series tends to infinity then z0 is part of the Julia set, otherwise it isn't. In the examples shown on the right the white regions are in the Julia set, black points are outside the Julia set. To create images of the Julia set we map pixels in the image onto values of z0 and colour the pixel dependent on the behavior of the series. In the examples on the right the image is mapped onto the range +-2pi in both the real and imaginary axes. The series is tested after 50 terms, it is decided that it tends to infinity if the absolute value of the imaginary part of zk is greater than 50. Footnote If you are wondering how to compute the sine of a complex number, you can use the following relationships: xk+1 = sin(xk) cosh(yk) yk+1 = cos(xk) sinh(yk) where zk = xk + i yk 我快要放弃乐 -v-|||